Name ___

Date

Class _

Populations and Communities • Skills Lab

Counting Turtles

Problem

How can the mark-and-recapture method help ecologists monitor the size of a population?

Skills Focus

calculating, graphing, predicting

Materials

- model paper turtle population
- calculator
- graph paper

Procedure

- **1.** The data table shows the results from the first three years of the study. Copy it into your notebook.
- **2.** Your teacher will give you a box representing the pond. Fifteen of the turtles have been marked, as shown in the data table for Year 4.
- **3.** Capture a member of the population by randomly selecting one turtle. Set it aside.
- 4. Repeat Step 3 nine times. Record the total number of turtles you captured.
- **5.** Examine each turtle to see whether it has a mark. Count the number of recaptured (marked) turtles. Record this number in the data table.

Data Table

Year	Number Marked	Total Number Captured	Number Recaptured (with Marks)	Estimated Total Population
1	32	28	15	
2	25	21	11	
3	23	19	11	
4	15			

Populations and Communities • Skills Lab

Counting Turtles (continued)

Analyze and Conclude

Write your answers in the spaces provided.

1. Calculating Use the equation below to estimate the turtle population for each year. The first year is done for you as a sample. If your answer is a decimal, round it to the nearest whole number. Record the population for each year in the last column of the data table.

Total population = $\frac{\text{Number marked} \times \text{Total number captured}}{\text{Number recaptured (with marks)}}$

Sample (Year 1):

 $32 \times \frac{28}{15} = 59.7$ or 60 turtles

- **2. Graphing** On the next page, graph the estimated total populations for the four years. Mark years on the horizontal axis. Mark population size on the vertical axis.
- **3. Interpreting Data** Describe how the turtle population has changed over the four years of the study. Suggest three possible causes for the changes.

4. Predicting Use your graph to predict what the turtle population will be in Year 5. Explain your prediction.

5. Communicating Write a paragraph that explains why the mark-andrecapture method is a useful tool for ecologists. When is this technique most useful for estimating population size?

Populations and Communities • Skills Lab

More to Explore

Suppose that only six turtles had been recaptured in Year 2. How would this change your graph?

